Ensemble Prediction Systems

Eric Blake
National Hurricane Center
May 1, 2019

Acknowledgements to Dr. Michael Brennan
Question 1

What are some current advantages of using single-model ensembles?

A. Estimates of uncertainty
B. TC intensity model spread
C. Alternative TC-track solutions
D. All of the above
E. A & C
Why Aren’t Models Perfect?

- Atmospheric variables cannot be measured to an infinite degree of accuracy or precision (measurement error)
- Models’ initial state never matches the real atmosphere (analysis error)
- Initial condition errors grow with model integration time, most rapidly at smaller scales (error growth)
- Model equations do not fully represent all of the processes in the atmosphere (model error)
- Model grid cannot explicitly resolve all features and processes in the atmosphere (model error)
How did we manage to extend the FSH beyond 2 weeks?

Predictable signals propagate from the better-initialized and more predictable scales (‘mainly’ the large scales, the slowly evolving components) to the less predictable (small/fast) scales.

Errors propagate from poorly initialized scales (‘mainly’ the smaller scales) thus reducing the predictive skill.

(Buzzi and Leutbecher 2015, QJRMS)
Options?

- Increase our understanding of physical processes and how models represent them (research)
- More accurate and numerous observations with greater coverage (expensive)
- Improved data assimilation methods (4-D Variational Data Assimilation, Ensemble Kalman Filter)
- Faster computers and more complex models (many programs competing for resources)
- Probabilistic forecasting with ensembles
Definitions

• **Deterministic Model** - single forecast from one forecast model or method using a single set of initial conditions
 – Examples: GFS, ECMWF, UKMET, GFDL, HWRF, BAMS

• **Ensemble** - collection of “member” forecasts verifying at the same time created from:
 – Different but equally viable initial conditions
 – Different forecasting methods and/or models that (ideally) statistically represent nearly all forecast possibilities
Definitions

• **Dynamical Model Ensemble** – based on perturbation of initial conditions of a single model or different models to create “member” forecasts
 - Examples: NCEP Global Ensemble Forecast System (GEFS), ECMWF Ensemble Prediction System

• **Control Run** – for dynamical model ensembles, the member of the ensemble run with the “best” initial analysis
 - The analysis used by the control run is usually perturbed to produce initial conditions for the remaining ensemble members

• **Spread** – measure of the degree of disagreement (i.e., standard deviation) between ensemble members
Ensemble Use

- Originally used for medium-to long-range forecasting of the large-scale pattern
- Uses have grown to encompass all temporal and spatial scales down to convective storm scale
- Address uncertainty, particularly those leading to rapidly diverging solutions
 - Initial conditions, model physics, resolution, model numerics
Ensemble Use

• Estimate rate of skill loss with time
 – Spread of solutions generally increases with time

• Compute probabilities of occurrence of a particular event or condition
 – 25 mm of precipitation, winds > 34 kt

• Identify regions where the analysis and forecast are sensitive to additional data in the analysis
 – Ensemble Kalman Filter, targeted observations
Ensemble Mean vs. Deterministic

- Deterministic runs (e.g., GFS) usually have more skill than any *individual ensemble member* due to superior resolution.

- Ensemble mean usually has at least as much skill as an *equal-resolution control run*.

- Ensemble mean can be more skillful than a *higher-resolution deterministic run*, especially beyond ~3 days.
Ensemble Mean vs. Deterministic

500-mb height anomaly correlation die-off chart – 30 Jan-16 Mar 2015

NH 500 mb Height (wave 1–20)
Average For 00Z30JAN2015 – 00Z16MAR2015

GEFS mean provides about 1 day of additional skill compared to the GFS

Courtesy NCEP EMC
Current Global Ensemble Systems that NHC uses most frequently
NCEP Global Ensemble Forecast System (GEFS)

- 4 cycles per day (00, 06, 12, 18 UTC)
- 21 members (1 control + 20 perturbed)
- Forecast extends out to 384 hours (16 days)

180-h forecast of 588 dm 500-mb height contour valid at 1200 UTC 22 March 2010
NCEP GEFS

• Current Configuration (last upgrade 2015- planned 2020)
 – T574 (~ 34 km) through 8 days, T328 (~ 52 km) days 8-16
 – 64 vertical levels

• Ensemble members
 – 20 members generated using Bred Vector and Ensemble Transform methods to address uncertainties in the initial conditions
 – Stochastic (statistical) perturbations try to address model uncertainty
 – Includes vortex relocation to NHC/CPHC/JTWC analyzed position for tropical cyclones in each ensemble member
 – Model physics consistent with GFS

• Deterministic GFS (FV3 coming in June)
 – T1534 (~ 13 km) through 10 days, T574 (~ 35 km) days 10-16
 – 64 vertical levels
ECMWF Ensemble Prediction System

- 51 members (1 control + 50 perturbed members)
- Run twice daily (00 and 12 UTC) out to 15 days
 - T639 (~18 km) to 15 days
 - 91 vertical levels
- Perturbations:
 - Initial condition: generated using singular vectors and perturbations from an ensemble of data assimilations
 - Physics: generated by two stochastic parameterization schemes
- Deterministic ECMWF
 - Horizontal grid resolution T1279 (~9 km) out to 10 days with 137 vertical levels
“Good” and “Bad” Ensembles

An ensemble forecast starts from initial perturbations to the analysis...

In a good ensemble “truth” looks like an member of the ensemble
(Toth, 1992)

The initial perturbations should reflect the analysis “errors of the day”
A bad ensemble is still useful (implies there is a bug in the system)

Good ensemble

Bad ensemble

Kalnay 2019
Matthew ensemble guidance 1 Oct 00 UTC

GEFS (blue) too underdispersive, especially in Caribbean

Every single GEFS member also too fast at 5 days

ECMWF (red) has more realistic spreads, albeit potentially too large
Ensemble Display and Interpretation
Displaying Ensembles

If we try to look at every ensemble member at once, it is messy and difficult to interpret.
Displaying Ensembles

Spaghetti Diagram – displays one isopleth at a time from each ensemble member
Displaying Ensembles

Ensemble Mean - average of multiple forecast members verifying at same time
Displaying Ensembles

Disagreement, or spread, between ensemble members

Credit: COMET
Displaying Ensembles

- **Black** lines = ensemble mean 500-mb height forecast
- Spread indicated by shading (meters)
 - **Orange/Red** – little agreement between members
 - **Blue** – good agreement between members
Displaying Ensembles

Ensemble Mean and Spread

- **Black** lines = ensemble mean 500-mb height forecast
- Spread indicated by shading (meters)
 - **Orange/Red** – little agreement between members
 - **Blue** – good agreement between members
Displaying Ensembles
Ensemble Mean and Spread

• Advantages
 – Summarizes data in easy to interpret form
 – Information provided for the entire domain
 – Low predictability features smoothed out by the ensemble mean and easily identifiabile using spread

• Disadvantages
 – Ensemble mean can be misleading (and may not be the best forecast) if multiple clusters of nearly equal probability forecast outcomes exist (i.e., bi-modal distribution)
 – May not reveal extreme outlier solutions
Interpreting Mean and Spread

Large spread within the ensemble mean feature \rightarrow **Uncertainty in amplitude of the feature**

- In this case, there is uncertainty in the **depth** (not the location) of this 500-mb trough.

- If there were a tropical cyclone located southeast of this trough, would the trough be deep enough to recurve the tropical cyclone?
Interpreting Mean and Spread

Large spread upstream or downstream of an ensemble mean feature → Uncertainty in the location of the feature

• In this case, there are nearly equal chances that the 500-mb trough will be east or west of the position shown by the ensemble mean trough

• If a tropical cyclone was located southeast of this trough, at what time will the tropical cyclone begin to be influenced by this trough?
Interpreting Mean and Spread

Large spread on one side of an ensemble mean feature ➔ A cluster of ensemble members different from the ensemble mean

• In this case, the spread indicates greater potential for the trough axis to be east of the ensemble mean trough than to the west

• If there was a tropical cyclone located southeast of this trough, at what time will the tropical cyclone begin to be influenced by this trough?
Single-Model Ensembles for TC Track Forecasting
NCEP Global Ensemble Forecast System
Tropical Cyclone Track Forecast Guidance

GEMN = GEFS Ensemble Mean
GFS = Deterministic GFS
In the Atlantic, the GEFS ensemble mean track forecast (AEMI) is competitive with the deterministic GFS (GFSI) through day 3 and better afterward.

In the east Pacific, AEMI beats GFSI at 48 h and beyond.
ECMWF Ensemble
Sandy example of desirable spread/verification
Joaquin ensemble guidance

GEFS

EC Ensemble
ECMWF Joaquin ensembles 29 Sep 1200 UTC
Ensemble Problems

• Need a properly calibrated system
 – GEFS is currently underdispersive
 – This problem results in an overconfident forecast
 – Lower resolution can also hinder a more accurate track forecast (i.e. when track especially dependent on intensity)

• Other issues
 – Ensemble mean can be misleading (and may not be the best forecast) if multiple clusters of nearly equal probability forecast outcomes exist (i.e., bi-modal distribution)
 – May not reveal extreme outlier solutions
Hurricane Leslie

Long lasting and *highly* annoying
Leslie track guidance 10/9/6z

Major model spread, but best models farthest south
Leslie track guidance 10/10/6z

EC ensemble not as definitive
Leslie track guidance 10/10/12z

72 hour zoom

- All models have a 400-600 n mi error
Few more models shift north, but most still miss the trough.
Deterministic models shift south, but little change in EC ensemble

~400 n mi errors in < 48 h

FV3 shifts over 1500 n mi
Leslie track guidance 10/12/6z

Models mostly jump northward
Finally!
A different way to view the data using probabilities
GEFS vs EC Ensemble 29 Sep 0000 UTC
GEFS vs EC Ensemble 30 Sep 0000 UTC
Little objective guidance is seen with ensembles now, though they help subjectively.

In-house product

- shading: combined probability of 70 ensemble members (GEFS + ECENS):
 - 850 – 700 hPa RH > 70%
 - 200 – 850 hPa vertical wind shear < 20 kt

- contours: 850 hPa relative vorticity (8 x 10^{-5} s^{-1} intervals)
 - thin green: ECENS members
 - thick green: ECMWF deterministic
 - thin yellow: GEFS members
 - thick yellow: GFS deterministic

Invest AL93
TC Intensity Ensemble Forecasting

- Little skill above single-model deterministic at present
- Very computational expensive to run high-resolution (<3 km) intensity ensembles
- HFIP is funding efforts to find products that could be operationally useful
Intensity Change Probability Distributions

GPMN 2016093006 MATTHEW (AL14)

00-24 h

24-48 h

48-72 h

Frequency (%) vs. Intensity Change
IRMA operational v. 5km

Date 20170905 12 UTC @ ECMF
Probability that IRMA will pass within 120 km radius during the next 240 hours
tracks: solid=HRES, dot=Ens Mean [reported minimum central pressure (hPa) 929]

18 km

Date 20170905 12 UTC @ ECMF
Probability that IRMA will pass within 120 km radius during the next 240 hours
tracks: solid=HRES, dot=Ens Mean [reported minimum central pressure (hPa) 929]

5 km

Richardson, ECMWF, 2018
Question 1

What are some current advantages of using single-model ensembles?
A. Estimates of uncertainty
B. TC intensity model spread
C. Alternative TC-track solutions
D. All of the above
E. A & C
Online Access to Ensemble Output and Training Resources
Access to Ensemble Output

NCEP GEFS and NAEFS: http://mag.ncep.noaa.gov/

Access to ensemble mean, spread, and spaghetti plots
Spaghetti diagram of 500-mb 522 and 582 dm height contours

FHR 72 forecast of the probability that the 12 hour accumulation exceeds 2 mm
(The 12-h accumulation period immediately precedes the valid time)
Access to Ensemble Output

- ECMWF Ensembles:
COMET Courses
http://www.meted.ucar.edu

- Introduction to Ensemble Prediction: http://www.meted.ucar.edu/nwp/pcu1/ensemble_webcast/
- Ensemble Forecasting Explained: http://www.meted.ucar.edu/nwp/pcu1/ensemble/
- Wave Ensembles in the Marine Forecast Process: http://www.meted.ucar.edu/nwp/WaveEnsembles/
- NWP Workshop on WRF and NAEFS: http://www.meted.ucar.edu/s_africa_work/
Thank you

Questions?