Marine Forecasting at TAFB
Scott.Stripling@noaa.gov
Waves 101
Concepts and basic equations
Have an overall understanding of the wave forecasting challenge

- Wave growth
- Wave spectra
- Swell propagation
- Swell decay
- Deep water waves
- Shallow water waves
Wave Concepts

• Waves form by the stress induced on the ocean surface by physical wind contact with water

• Begin with capillary waves with gradual growth dependent on conditions

• Wave decay process begins immediately as waves exit wind generation area...a.k.a. “fetch” area
Anatomy of a Wave

Wave Frequency
The number of wave crests passing point A each second

\[\omega = \frac{2\pi}{T} \]

Wave Period
The time required for the wave crest at point A to reach point B
(Always Constant for an individual wave)

\[T = \frac{L}{C} \]

Wave Number:
\[k = \frac{2\pi}{L} \]

Wave Phase Speed
\[c = \frac{L}{T} \]
Wave Growth

There are three basic components to wave growth:

• Wind speed
• Fetch length
• Duration

Wave growth is limited by either fetch length or duration
Fully Developed Sea

• When wave growth has reached a maximum height for a given wind speed, fetch and duration of wind.

• A sea for which the input of energy to the waves from the local wind is in balance with the transfer of energy among the different wave components, and with the dissipation of energy by wave breaking - AMS.
Fetches
Dynamic Fetch
Wave Growth Nomogram

Wave Analysis and Forecasting Nomogram

- Hs (ft) = Wind duration (hr) = Ps (s)

Bretschneider, 1970
Calculate Wave H and T

- What can we determine for wave characteristics from the following scenario?
 - 40 kt wind blows for 24 hours across a 150 nm fetch area?
 - Using the wave nomogram – start on left vertical axis at 40 kt
 - Move forward in time to the right until you reach either 24 hours or 150 nm of fetch
 - What is limiting factor? Fetch length or time?
 - Nomogram yields 18.7 ft @ 9.6 sec
Wave Growth Nomogram

Figure 5: Deep water wave forecasting curves as a function of wind speed, fetch length, and wind duration (for fetches 1 to 1,000 miles)
Wave Dimensions

- $C =$ Wave Celerity
- $L =$ Wave Length
- $T =$ Wave Period
- $C_g = C/2$
- $C = L/T$
- $L = T \times C$
- $T = L/C$
Wave Dimensions

- \(C = \frac{L}{T} \)
- \(L = T \cdot C \)
- \(T = \frac{L}{C} \)
- \(\frac{L}{2} = \text{end of deep H2O} \)
- \(C_{\text{deep}} = 1.56 \cdot T \)
- \(L = 1.56 \cdot T \cdot T \)
- (units in meters/sec)

- We only get \(T \) from the observations
- Find \(C \) and \(L \) for a wave period of 10 seconds
- Find shallow water transition depth
Wave Group Velocity (Cg)

- OFTEN THE TERM USED TO INDICATE SPEED OF WAVE PACKET (Cg)
- FOR DEEP WATER $C_g = \frac{(1.56 \times T)}{2}$
- FOR SHALLOW WATER $C_g = C$

- $Cd = \sqrt{gL/2\pi}$
- $Cs = \sqrt{gH}$

- $g = $ GRAVITY
- $L = $ WAVE LENGTH
- $H = $ WATER DEPTH
- $\pi = 3.14159$
Wave Spectrum Comprises A Combination of Wave Heights & Periods

• “Sea state” is comprised of all wind wave and swell components passing through a point in time. Each wave component has its own individual spectrum of both height (H) and period (T).
Statistical Wave Height Spectrum

Figure 4.9: The statistical distribution of wave heights showing various parameters (from Bretschneider, 1964)
Wave Height Spectrum

• Measured sea state is typically $H_{1/3}$ termed Significant Wave Height (SWH)
 • $H_{1/10} = 1.27 \times H_{1/3}$
 • $H_{1/100} = 1.67 \times H_{1/3}$
 • $H_{\text{max}} = 2.0 \times H_{1/3}$
Wave Period Spectrum or Distribution

Spectral Density for Station 51001 on 05/02/2007 at 0100 Z (fs=0.141 Hz)
Wave Period Spectrum or Distribution

Waimea Bay, Hawaii

- From Scripps CDIP site
- Mountain plot
- Cumulative monthly plot of energy spectrum
- Easily see various wave events and peak energy

http://cdip.ucsd.edu/
Combined Seas

• Combined seas (H) represent the sum total height of all wind-wave and any number of swell components.

• Cs = \sqrt{ww*ww + s1*s1 + s2*s2 + s3*s3}

• Max Cs = 2.0*Cs
POP QUIZ!

• How fast do 15 sec period waves move?
 A. 15 kt
 B. 23 m/s
 C. 18 m/s
POP QUIZ!

• How fast do 15 sec period waves move?
 23.4 m/s

• C deep = 1.56*T
POP QUIZ!

• Which wave moves faster, a 20 footer or 12 footer?

A. The 20 footer
B. The 12 footer
C. Same speed
D. Insufficient information
POP QUIZ!

- Which wave moves faster, a 20 footer or 12 footer?

- $C = \frac{L}{T}$
- $L = T \times C$
- $T = \frac{L}{C}$
- $C_{\text{deep}} = 1.56 \times T$

Insufficient information
POP QUIZ!

• Which is longer, a football field, or a wave of 3 foot @ 10 seconds?

A. Football field
B. 3 foot, 10 sec wave
C. Equal length
POP QUIZ!

• Which is longer, a football field or a 3 foot, 10 second wave?

• \(L = 1.56 \times T \times T \)

3 foot, 10 sec wave
156 m
POP QUIZ!

• What is the combined sea height for a 7’/10 sec wave & 7’/15 sec swell?
 A. 14 feet
 B. 49 feet
 C. 25 feet
 D. 10 feet

• What is MCS?
POP QUIZ!

• What is the combined sea height for a 7’/10 sec wave & 7’/15 sec swell?
 9.89 or 10 feet

• Cs=\sqrt{ww*ww+s1*s1+s2*s2+s3*s3...}

• What is MCS?
 19.8 or 20 feet

• Max Cs=2.0*Cs
Wave Steepness

- H/L
- Affects vessels differently
- Vessel size and wave height dependent

Acknowledgements: www.e-gnu.com
“Rogue” or Extreme Waves

• 'Rogue wave' theory for ship disaster
• 44 crewmen perished when the bulk carrier MV Derbyshire sank on 9 Sept 1980, south of Japan, in Typhoon Orchid
• Scientists have discovered that a rogue wave pattern helped cause one of the UK’s biggest maritime disasters
• Wave height > 2 * SWH
Transient Wave-Wave Superposition

- Wave #1
- Wave #2
- Combined sea height
- Local wave "super-position"
- "Rogue Wave"
Waves in Significant Currents

- L shortened for waves opposing current
- Largest change for slow waves in fast currents
- Remember $C = L/T$, where T is conserved!
- Wave steepness and height modified!
General Positions of Global Oceanic Currents
Waves Against Current

Gulf Stream Forecast with Jason 2 altimeter data

Jason 2 altimeter data vs Wave Models
Deep Water Wave Forecasting
Wave Decay

- Wave generation and growth has occurred
- Various wave energy leaves fetch area
- Wave/swell dispersion
- Wave/swell energy dissipation...decay begins immediately
- What happens?
Wave Propagation

• Angular spreading
• Energy can be approximated by $\cos A$
• Energy begins to fall off rapidly when $A > 60$
Angular Spreading
Wave Propagation

- Angular spreading calculations
Wave Propagation

- Gravity Waves on a sphere (Earth’s oceans) follow Great Circle Paths (GCP) or Tracks
GCP Examples
Wave Decay Process

- What happens to H and P during this decay process?
- Lateral spreading
- Horizontal separation
- H diminishes
- P increases
- Wave to wave energy transfer – non linear
Spectral Density Change

- Separation occurs
- Longest period waves outrun swell packet and are called “forerunners”
Calculating Wave Decay and Arrival Time

- A storm system is 1000 nm from your coastline
- $\text{SWH} = 10$ meters
- $\text{Tp} = 11$ sec
- Fetch width = 300 nm
- Upon arrival at coastline, what is?

 - SWH
 - Tp
 - Travel time
Swell Height Change
Swell Period Change
Swell Travel Time
Evaluating Total Sea State

Wave models vs altimeter data

Scatterometer data
Sea State and Dominant Wave Direction
Use of WW3 Model via the NOAA website

WW3 SWH

WW3 Tp
Evaluating Wave Field of TC's
Hurricane Bill 2009
In the 4 fetch areas, which waves will remain in the fetch the longest?

“Fetch Reduction” always occurs in Quadrants 1-2-3 . . . as long as the cyclone is moving

“Fetch Enhancement” may occur in Quadrant 4 . . . depending on the speed of the cyclone
Wave Growth in TC’s

Three possible scenarios for wave growth in right quadrant of TC’s

Optimum wave growth will occur when waves are in phase with dynamic fetch
Dynamic Fetch Wave Growth in TCs
TC Maria’s Trajectory
Maria Downgraded to Tropical Disturbance 09/1200 UTC
Maria Downgraded to Tropical Disturbance 09/1200 UTC
Key Points for Trapped Fetch Waves (TFW) in TC’s

• Straight line storm motion with fetch duration of 18 (or more) hours necessary

• Storm motion of 20 kt and greater yields significant wave growth enhancement

• The smaller the fetch, the greater the enhancement (above a stationary storm scenario)

• Sub-synoptic scale storm systems, like TCs, cyclones and polar lows, have the greatest potential for optimum resonance.

• *Perfect* resonance occurs if TC acceleration matches that of the waves ...yielding maximized wave growth
CHC Fetch Enhancement Nomogram

Fetch Enhancements
Wind Speed vs. System Speed for 250 nmi Fetch Length

System Speed (kt)

Wind Speed (kt)

Fetch Reduction

Fetch Enhancement

Significant Enhancement

Extreme Enhancement