## 2016 RA-IV WMO Tropical Meteorology Course 8 March 2016

### WEATHER RADAR PRINCIPLES



Stacy Stewart
Senior Hurricane Specialist

NOAA/National Hurricane Center, Miami, Florida

### **COURSE OBJECTIVES**

### Part 1. Brief Review of Basic Radar Principles

- 1. Wavelengths suitable for weather surveillance
- 2. Beam height above the surface
- 3. Equivalent reflectivity or dBZ
- 4. Z-R relationships
- 5. Doppler velocities and the Doppler dilemma

### **COURSE OBJECTIVES (cont'd)**

### Part 2. The NOAA WSR-88D Doppler Weather Radar

- 1. The operational system
- 2. A few practical examples
- 3. Interpretation of the data
- 4. Why we need algorithms
- 5. A glimpse into the future

### Propagation of Electromagnetic Radiation (EM)

$$V_{\text{\tiny em}} = f\lambda$$



### Radar Operating Frequencies

| Frequency (MHz) | Wavelength (cm) | Band                   |
|-----------------|-----------------|------------------------|
| 30,000          | 1               | K (scatterometer)      |
| 10,000          | 3               | X                      |
| - and Alexander | 5               |                        |
| 3,000           | 10              | S                      |
| 1,500           | 20              | L(air traffic control) |

- The longer (shorter) the wavelength, the larger (smaller) the precipitation-size particle that can be detected.
- The longer (shorter) the wavelength, the less (more) likely that precipitation attenuation of the radar signal will occur.

### WEATHER RADAR BANDS

10 cm S-band

5 cm C-band

1 cm K-band

The NOAA National Weather Service WSR-88D Doppler radar is a 10-cm wavelength (S-band) weather detection radar that is excellent at sampling most precipitation particles without encountering any significant signal loss due to precipitation attenuation.

# A large amount of horizontally polarized EM energy (~1,000,000 W) is transmitted...



...but only a <u>fraction</u> of that energy (~0.000001 W) is 'reflected' (i.e., returned) back to the radar receiver.

### Radar Beam Propagation



Differences in atmospheric density will cause the radar beam to 'bend' (i.e., refract) differently causing differences in beam centerline height from "standard".



### -- RHI diagrams assume standard refractivity index --

#### Radar Beamwidth Calculator

http://www.wdtb.noaa.gov/tools/misc/beamwidth/beamwidth.html

#### LIMITATIONS OF RADAR



### RETURNED POWER

number of

drops of

drop

diameter(s)

Returned Power:  $P_r \propto Diameter^6$ 

Reflectivity factor: 
$$Z=\sum_{i=1}^{diameter D}n_{i}^{diameter D}$$

- Only a small increase in drop diameter can result in a large increase in reflectivity (Z).
- Large drops return the most power...but can contribute less total water mass!

### Effect of Drop Size on Reflectivity



One 1/4-inch diameter drop returns as much energy as 64 drops of 1/8-inch diameter.

<u>However</u>, one 1/4-inch diameter drop has a volume of only 0.065 in<sup>3</sup>, whereas sixty-four 1/8-inch diameter drops yield a volume of 0.52 in<sup>3</sup> ...or <u>8 times as much total water mass</u>!

### What would Z be for 64 drops having a diameter of only 1 mm?



$$Z = \sum n_i \times D_i^6$$

$$Z = \sum 64 \times 1^6$$

$$Z = 64 \frac{mm^6}{3}$$

### Now, what would Z be for only one drop having a diameter of 3 mm?



$$Z = \sum n_i \times D_i^6$$

$$Z = \sum 1 \times 3^6$$

$$Z = 729 \frac{mm^6}{m^3}$$

### **DILEMMA**

The one 3-mm diameter rain drop returns <u>more</u> <u>power</u> and produces a larger reflectivity than the sixty-four 1-mm drops do... yet the one 3-mm diameter rain drop <u>contains less total water mass</u> than the sixty-four 1-mm rain drops!

# Estimating Rainfall Rate Using Radar Reflectivity Data

$$Z = \sum n_i \times D_i^6$$

Since we do not know the actual drop size distribution in a radar volume sample, we use "equivalent reflectivity" instead of actual reflectivity.

$$Z_e = \frac{P_r \times R^2}{const}$$

where, Pr = power returnedR = target range

**Equivalent** reflectivity

$$dBZ_e = 10 \times \log(Z_e)$$

Using 10 times the logarithm of  $Z_{\rm e}$  keeps the range of values of  $Z_{\rm e}$  small, but still operationally useful.

$$dBZ_e = 10 \times \log(Z_e)$$

| $Z_{e}$    | Log Z <sub>e</sub> | dBZ <sub>e</sub> |
|------------|--------------------|------------------|
| 10         |                    | 10               |
| 100        | 2                  | 20               |
| 1,000      | 3                  | 30               |
| 10,000     | 4                  | 40               |
| 100,000    | 5                  | 50               |
| 1,000,000  | 6                  | 60               |
| 10,000,000 | 7                  | 70               |

### **Z-R** or Reflectivity-Rainfall Relationships

we now have the input we need (i.e. Z<sub>e</sub>)



Find an empirical relationship to estimate rainfall rate:

$$Z_e = a R^b$$

$$Z_e = 300 R^{1.4}$$

### Rainfall Rates (in\mm hr<sup>-1</sup>) for Various *Z-R* Relationships

|                                       | dBZ             | WSR-88D<br>300R <sup>1.4</sup> | Conventional 200R <sup>1.6</sup> | Convective 486R <sup>1.37</sup> | Snowfall 2000R <sup>2</sup> |
|---------------------------------------|-----------------|--------------------------------|----------------------------------|---------------------------------|-----------------------------|
|                                       | 20              | 0.02\0.05                      | 0.03\0.76                        | 0.01\0.25                       | 0.01\0.25                   |
|                                       | 30              | 0.09\2.28                      | 0.12\3.05                        | 0.07\1.78                       | 0.03\0.76                   |
|                                       | 40              | 0.48\12.2                      | 0.47\11.9                        | 0.36\9.14                       | 0.09\2.29                   |
|                                       | 50              | 2.50\63.5                      | 1.90\48.3                        | 1.90\48.3                       | 0.28\7.11                   |
| 10-10-1                               | 55              | 5.7\145                        | (55 dBZ = maximum re             | eflectivity used for rainfa     | II conversion by WSR-88D)   |
| Probable<br>Wet Hail<br>Contamination | ۲60             | 12.9\327                       | 8.10\306                         | 10.3\262                        | 0.88\22.4                   |
|                                       | <sup>L</sup> 70 | 67.0\1702                      | 34.1\866                         | 55.4\1407                       | 2.78\70.7                   |

### Rainfall Rates (in\mm hr -1) for WSR-88D <u>Tropical</u> Z-R Relationship

|                                                            |      |          | THE RESERVE OF STREET, |
|------------------------------------------------------------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                            | dBZ  | Z        | 250R <sup>1.2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| minimum radar reflectivity fordetermining eyewall diameter | → 15 | 31.6     | 0.01\0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 20   | 100.0    | 0.02\0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 25   | 316.2    | 0.05\1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 30   | 1000.0   | 0.12\3.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 35   | 3162.3   | 0.33\8.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 40   | 10000.0  | 0.85\21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| the order                                                  | 45   | 31622.8  | 2.22\56.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                            | 50   | 100000.0 | 5.80\147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAD SALA                                                   | 55   | 316227.8 | 15.14\385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

$$R = \sqrt{\frac{Z}{250}}$$

Radar Detection of Atmospheric Motion or

Doppler Velocities



In addition to a measurement of power (reflectivity), we also have a measurement of particle motion.

A Doppler weather radar measures a single component of motion, but <u>only</u> <u>toward</u> or <u>away</u> from the radar.

### The "Doppler Dilemma"

1. Speed of light

C

2. Wavelength

- λ
- 3. PRF (pulse repetition frequency)

$$R_{\text{max}} = \frac{c}{2PRF}$$

but,

$$V_{\text{max}} = PRF \frac{\lambda}{4}$$

### Example of Actual Velocity $=> V_a = 20 \text{ kt}$



### Part 2

### NOAA WSR-88D Doppler Weather Radar

- •Weather Surveillance Radar 1988-Doppler
- •first working prototype installed in Norman, OK in 1988
- This is the radar used operationally by the U.S. National Weather Service
- NEXRAD is the name of the federal procurement program which developed the WSR-88D





### WSR-88D radar utilizes 9 different Volume Scans to collect reflectivity and Doppler velocity data







#### BASE REFLECTIVITY

JUA

11/17/99 **0**112Z RANGE: 23**0** KM RES: 1 KM X 1 DEGREE MODE: PRECIPITATION ELEV: **0**.5 DEGREES

DBZ



MAX DBZ: 53

### Hurricane Lenny (1999) - 100 kt intensity at 0212 UTC









BASE REFLECTIVITY

JUA

11/17/99 1141Z RANGE: 230 KM RES: 1 KM X 1 DEGREE MODE: PRECIPITATION ELEV: 0.5 DEGREES

DBZ



MAX DBZ: 51





Radar beam is overshooting and not sampling strongest winds below 1,500 meters altitude at 0.5° elevation angle and at sea-level.

However, when San Juan radar antenna altitude of 860 meters is factored in, the bottom of the radar beam is actually at 3,000 meters ASL!

# **Example -- Hurricane Debby (2000)**





#### H. Debby raw Doppler velocity data from WFO San Juan



However...recon flight-level winds were 65 kt! Why the difference?

# VORTRAC Ground-Based Velocity Tracking Display (GBVTD)

-- decomposed Doppler velocities into tangential winds --



# GBVTD-derived tangential winds compared to reconnaissance aircraft 850 mb (~5,000 ft ASL) flight-level winds





## **Example -- Hurricane Dennis (2005)**

105 kt intensity at landfall in the Florida panhandle as determined by recon aircraft



# Hurricane Katrina (2005) making landfall near Broward & Miami-Dade County line and later moved over the NHC



#### <u>Hurricane Katrina radar observations from NHC – 25 AUG 2005</u>

2005,AUG,25,1700,26.18,79.51,F,CLOSED CIRCULATION WITH DRY SLOT TO N AND W.,RM,KAMX 2005,AUG,25,1728,26.19,79.50,F,MAX WND 65 KT S QUAD AT 4730 FT,RM,KAMX 2005,AUG,25,1801,26.16,79.54,F,MAX WND 77 KT S QUAD AT 5075 FT,RM,KAMX 2005,AUG,25,1829,26.16,79.63,F,WEAK REF NW SEMICIRCLE...MAX WND 75 KT SE QUAD,RM,KAMX 2005,AUG,25,1902,26.14,79.67,F,80 KTS S OF CTR AT 3900 FT,RM,KAMX 2005,AUG,25,1929,26.14,79.74,F,85 KT MAX S QUAD AT 3417 FT JUST S OF CTR,RM,KAMX 2005,AUG,25,2002,26.07,79.84,F,CENTER RAGGED CMA GOOD ZERO ISODOP,CJM,KAMX 2005,AUG,25,2030,26.00,79.90,G,INBOUND MAX OVER SE BROWARD 75 KT 2300',CJM,KAMX 2005, AUG, 25, 2058, 25.98, 79.95, G, STRONGEST CONV S EYEWALL KEY BISCAYNE AREA, CJM, KAMX 2005, AUG, 25, 2134, 25.99, 79.96, G, CENTRAL CONV BECOMING MORE SYMMETRICAL, CJM, KAMX 2005,AUG,25,2204,25.97,80.03,G,--,CJM,KAMX 2005,AUG,25,2231,25.96,80.10,G, CENTER OVER COAST BROWARD-DADE COUNTY LINE,CJM,KAMX 2005,AUG,25,2304,25.96,80.16,G,HIGHEST WINDS OFFSHORE ABOUT 70 KT 1500',CJM,KAMX 2005,AUG,25,2332,25.89,80.24,G,--,CJM,KAMX 2005,AUG,26,0000,25.88,80.31,G,--,CJM,KAMX 2005,AUG,26,0034,25.78,80.39,G,NHC IN EYE - CALM OUTSIDE,CJM,KAMX 2005,AUG,26,0101,25.73,80.46,G,75 KT INBOUND OVER CENTRAL DADE 700 FT ,CJM,KAMX 2005,AUG,26,0126,25.70,80.53,G,--,CJM, KAMX 2005,AUG,26,0201,25.64,80.60,G,TIGHT VELOCITY COUPLET STILL EVIDENT IN VEL,CJM,KAMX 2005,AUG,26,0228,25.61,80.71,G,--,CJM,KAMX 2005,AUG,26,0301,25.58,80.82,G,80 KT AT 900 FT OUTBOUND,CJM,KAMX

2005,AUG,26,0326,25.56,80.93,G,74 KT AT 1600 FT,HDC,KAMX

# **Example -- Hurricane Katrina (2005)**

Landfall along the southeast Louisiana coast





**Maximum velocity** Range is -123 kt to +123 kt due to not changing velocity increment to expand detectable velocity range to +248 kt klix 0.5 Refl Mon 08:58Z 29-Aug-05 + klix 0.5 Vel8 Mon 08:58Z



## **Example -- Hurricane Wilma (2005)**

Landfall along the southwest Florida coast





## **Example -- Hurricane Humberto (2007)**

Landfall along the upper Texas coast -

System strengthened from a 25-kt TD to an 80-kt Hurricane in 24 hours prior to landfall

#### Houston-Galveston, TX radar loop, 12-13 Sep 2007





# Next: Dual-Polarization Doppler Weather Radars

But first, we do the exercise...

#### Conventional Horizontal-Polarized Radar



Typical rain drop is a flat, oblate spheroid with a wider horizontal axis that returns more energy in the horizontal plane

#### **Dual-Polarized Radar**



Provides betters Z-R relationship and rainfall estimates by determining *precipitation type* 

# New parameter called "Differential Reflectivity" or "Z<sub>DR</sub>" helps to determine precipitation type

Z<sub>h</sub> = horizontal polarized reflectivity

 $Z_v$  = vertical polarized reflectivity

$$Z_h > Z_v$$
 for raindrops



 $Z_h < Z_v$  for large wet hailstones

$$dBZ_{dr} = 10 \times \log (Z_h/Z_v)$$

# **Z**<sub>DR</sub> values for meteorological echoes typically range between -2 dB and 6 dB

- •Values of  $Z_{DR}$  well <u>above zero</u> indicate the hydrometeors in the volume are <u>horizontally oriented</u> (e.g., rain) -- meaning their horizontal axis is longer than their vertical axis ( $P_h > P_v$ ).
- •Values of  $Z_{DR}$  well <u>below zero</u> indicate the hydrometeors in the volume are <u>vertically oriented</u> (e.g., large hail) -- meaning their vertical axis is longer than their horizontal axis ( $P_h < P_v$ ).
- •Values of  $Z_{DR}$  <u>near zero</u> indicate the hydrometeors in the volume have a nearly <u>spherical shape</u> (e.g., snow, giant hail), in the mean  $(P_h \sim P_v)$ .

http://www.wdtb.noaa.gov/courses/dualpol/outreach/DualPol-Flipchart.pdf

Example: Consider a field of large, falling raindrops. The drops tend to fall with an oblate, <u>horizontal</u> orientation. The field of drops, as a whole, will have a <u>larger cross-section</u> of water in the <u>horizontal plane</u> compared to the vertical.

A horizontally-polarized radar pulse will, therefore, backscatter more energy/power in this field of drops than a vertically-polarized pulse will, resulting in more radar return for the horizontal pulse than the vertical pulse.

In this case,  $Power_h > Power_v => Z_h > Z_v$ , so  $Z_{DR} > 0$ .

#### Large Raindrops



Example: 
$$Z_h = 317,000$$
 and  $Z_v = 100,000$  (i.e. 50 dBZ)

Therefore, 
$$Z_{DR} = 10 \log (Z_h/Z_v)$$
  
= 10 log (317000/100000)  
= 10 log (3.17)  
= 10 X 0.501  
 $Z_{DR} = 5.01$ 

#### Large Wet Hailstones



Example: 
$$Z_h = 100,000$$
 and  $Z_v = 317,000$  (i.e. 55 dBZ)

Therefore, 
$$Z_{DR} = 10 \log (Z_h/Z_v)$$
  
= 10 log (100000/317000)  
= 10 log (0.315)  
= 10 X -0.501  
 $Z_{DR} = -5.01$ 

 Differential reflectivity values above 2 dB are commonly observed in rain.

 Although hailstones are not necessarily spherical, studies have shown that they fall with a tumbling motion -- meaning a field of falling hailstones within the radar resolution volume will "appear" to consist of nearly spherical hydrometeors. Therefore, the value of dBZ<sub>DR</sub> for hail is usually close to zero.

 Some graupel and hail hydrometeors with a conical shape can fall with their major axes oriented in the vertical. In these cases, the dBZ<sub>DR</sub> will be found to be negative.

### Dual-Pol Radar Example -- Hurricane Irene (2011)



Provides betters Z-R relationship and rainfall estimates by determining precipitation type

http://www.nws.noaa.gov/com/weatherreadynation/news/121311 irene.html

# Caribbean Meteorological Organization (CMO) Doppler Weather RADAR Project

- €13-million (Euro) project that aims to replace old radars with new Doppler radars.
- Goal is to provide improved awareness of approaching tropical cyclones and heavy rainfall events.
- New radars in Barbados, Belize,
   Guyana, and Trinidad.



#### The Future of Weather Radar?



NEXRAD-In-Space

(d) System fully deployed. Toward the end of the deployment, the perimeter structure and the reflector are inflated to aid in shape return.

> John K. H. Lin\* ILC Dover LP, Frederica, Delaware, 19946

## **Conclusions**

- Wavelength is a key design consideration for weather radar (WSR-88D uses 10 cm)
- Doppler velocity is an effective tool in determining tropical cyclone intensity, and detecting rapid intensification.
- Future dual polarization will give better precipitation estimates.
- •NEXRAD-in-space will generate radar data for the entire Atlantic basin.

