JMA's International Cooperation in Strom Surge Forecasts in Southeast Asia

Nadao Kohno
Office of Marine Prediction,
Global Environment and Marine Department, JMA
nkono@met.kishou.go.jp; nkohno@mri-jma.go.jp
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
Risk of storm surges is decided by the difference between water level and land height.
Mechanism of storm surges

1. Inverse barometer effect

\[1\text{hPa pressure decrease} \quad \square \quad 1\text{cm surge} \]

2. Wind setup

\[\text{surge} \]

\[\square V^2 \ (\text{wind stress: square of wind speed}) \]

\[\square L \ (\text{horizontal scale of wind: fetch}) \]

\[\square 1/h \ (\text{inverse of water depth}) \]
Geographic condition
Sea Bathymetry (NGDC ETOPO2)

Contours are drawn in every 50m.

The area vulnerable to storm surge

- Large storm surge

- Rare Tc

Mid-latitude lows
Tropical Cyclones
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
Operational Storm Surge Models at JMA

<table>
<thead>
<tr>
<th></th>
<th>Japan Area</th>
<th>Asia Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2 dimensional non-linear model</td>
<td>2 dimensional linearized model</td>
</tr>
<tr>
<td>Coordinate</td>
<td>Lat/Lon Cartesian grid</td>
<td>Lat/Lon Cartesian grid</td>
</tr>
<tr>
<td></td>
<td>Arakawa C-Grid</td>
<td>Arakawa C-Grid</td>
</tr>
<tr>
<td>Area</td>
<td>20.0N50.0N 117.4E150.0E</td>
<td>0.046.0N 95.0E160.0E</td>
</tr>
<tr>
<td>Grid resolution</td>
<td>45’’ ~ 30’’ ~ 12’’ ~ 8’’ (1km ~ 16km)</td>
<td>2’’ ~ 2’’ (~ 3.7km)</td>
</tr>
<tr>
<td></td>
<td>Adaptive Mesh Refinement (AMR)</td>
<td></td>
</tr>
<tr>
<td>Time step</td>
<td>4 seconds</td>
<td>8 seconds</td>
</tr>
<tr>
<td>Forecast hours</td>
<td>33(30)</td>
<td>72</td>
</tr>
<tr>
<td>Calculation run</td>
<td>8 times / day (3 hourly)</td>
<td>4 times / day (6 hourly)</td>
</tr>
<tr>
<td>Initial time (UTC)</td>
<td>00,03,06,09,12,15,18,21</td>
<td>00,06,12,18</td>
</tr>
<tr>
<td>Number of prediction courses</td>
<td>In case of Typhoons: 6 courses (Center, 4 courses on the forecast circles, NWP predicted course) No typhoon: 1 course (NWP course)</td>
<td>1 course (NWP predicted course)</td>
</tr>
<tr>
<td>forcing</td>
<td>MSM GPV (5km)</td>
<td>GSM GPV (20km)</td>
</tr>
<tr>
<td>Typhoon bogus</td>
<td>Pressure profile: Fujita(1952), Gradient wind (with inflow angle 30 deg.), Asymmetric component by typhoon movement</td>
<td></td>
</tr>
</tbody>
</table>
5 model runs for 5 possible typhoon tracks

- The model runs for 5 possible tropical cyclone tracks to cover a major set of scenarios.

1. Center track with highest possibility
2. Faster track
3. Rightward biased track
4. Slower track
5. Leftward biased track
Why do we need “ensemble” Predictions?

Storm surge behaviors strongly depend on typhoon tracks.
WMO Storm Surge Watch Scheme (SSWS)

Real-time storm surge information issued for TC Members by the RSMC Tokyo

- Storm surge distribution maps (2011.6 -)
- Storm surge time series charts (2012.6 -)

History

2008.6 60th WMO Executive Council (Geneva, 2008.6)
Request to WMO/SG to facilitate development of Storm Surge Watch Scheme.

2008.12 14th Regional Association II (Tashkent)

2009.1 41st Typhoon Committee (Chiang Mai)
plan for the establishment of a Regional Storm Surge Watch Scheme suitable for the TC region.

2010.1 42nd Typhoon Committee (Singapore)
request to Members of providing tidal data & bathymetric data to RSMC Tokyo.
(System development in JMA)

2011.6 RSMC Tokyo has started operation to provide storm surge distribution maps through its Numerical Typhoon Prediction (NTP) website.

2012.6 RSMC Tokyo has started to provide storm surge time series charts at one point for each TC Member (forecasting points to be increased in due course).

2013.6 RSMC Tokyo extended forecasting region and added seven stations for time series charts.

Asia Area Storm Surge Model

- Global Spectral Model (GSM)
 - Sea Level Pressure winds

- Typhoon Information
 - Locations, Central pressure, wind etc

- 2 min. resolution (3.7km)
- 72 hours forecast
- 3 hourly product
- 4 times run a day (00/06/12/18 UTC)

Products are provided to the Typhoon committee members via the JMA Numerical Typhoon Prediction (NTP) Website
Horizontal storm surge maps
- Whole domain maps and enlarged ones around a typhoon (3hourly, up to 72 hours) are provided (1 June, 2011 ~)

JMA Numerical Typhoon Prediction (NTP) Website
(https://tynwp-web.kishou.go.jp/)

(a) storm surge map
(b) enlarged map
(The map data can be downloaded too.)
Time series charts at selected stations

Predicted storm surges / tides, astronomical tides, sea level pressures and winds are provided

- Current: 10 stations
 Macao, Quarry Bay (Hong Kong), Hua Hin, Chum Phon (Thailand),
 Incheon, Boryeong, Mokpo, Busan, Jeju, Sokcho (Korea)
- 9 stations (Philippines), 20 stations (Vietnam), and 1 stations (Guam, US) (in 2014)
- stations will further increase upon request from TC Members

(a) Predicted (red) and astronomical (blue) tides

(b) Storm surges (green), surface pressure (orange) and wind barbs

Example of a time series data at Quarry Bay (Hong Kong)
JMA issues storm surge distribution maps, but it becomes invisible when pressure contours are densely drawn.

We are now planning to modify the map image, so that the maximum surge height can be easily recognized.
Accuracy of Asian region storm surge model (August – November, 2013)

Comparison with tide observed data in Japan

The main cause of errors seems to be the error of typhoon position.
Improvement plan

- Modification of storm surge model products
- To add more stations for time series
- To improve storm surge model accuracy
- Enhanced information (probabilistic / inundation)
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
JMA collaboration with NMHSs

JMA also trains staff of other National Met. / Hydro. Services and provides storm surge model for using their own operation.
- ESCAP/WMO Typhoon Committee Attachment Training at the RSMC Tokyo
- TCP/JCOMM Technical workshop
- JICA training course
- individual visits

(Recent one)

Training and Capacity building on Storm Surge Modeling and Risk Mapping
(24-28, June, 2013, in Bangkok)
Organized by Asian Disaster Preparedness Center (ADPC).
Supported by UNESCAP Trust Fund for Tsunami, Disaster and Climate Preparedness and the MOFA(Norway)
Participants: PAGASA(Philippines), DMH(Myanmar), DOM(Sri Lanka), NHMS(Vietnam), TMD(Thailand)

Example of storm surge prediction by Ty Haiyan, operationally simulated by PAGASA staff

(a) 03UTC (3 hours forecast)
(b) 06UTC (6 hours forecast)
Initial: 00UTC on NOV 08
Storm surges by Typhoon Haiyan (1330)

Bathymetry of the Philippines
Operational Analysis

- Maximum Wind: 125 kt (65 m/s)
- Wind Radius: 70 NM (130 km)
- Central Pressure: 895 hPa

- Upgraded to TS
- Eastern Samar.
- Northern Vietnam

MTSAT-IR
11/7 18Z
Maximum storm surge by Ty Haiyan

Maximum storm surge: Around 5m
Storm surges by Ty Haiyan

South of Masbate Island (Aside Gulf)

North of Panay Island

North of Negros Island

Leyte Gulf (Tacloban)

North of Cebu Island

Storm surge (m)
Ocean waves by Ty Haiyan

Significant wave heights (m)

00UTC 07 NOV 2013

06UTC 07 NOV 2013

12UTC 07 NOV 2013

18UTC 07 NOV 2013

00UTC 08 NOV 2013

06UTC 08 NOV 2013
Storm Surge by Cyclone Nargis in 2008

Track and intensity of Nargis
Storm Surge by Cyclone Nargis in 2008

Inundation area

Simulated maximum surge
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
Contents

• Introduction
 – Risk of storm surges
 – Situation of storm surges in Southeast Asia

• Storm Surge Information
 – Storm surge model
 – Storm Surge Watch Scheme

• Cooperation in capacity building

• An integrated approach
 – WMO Coastal Inundation Forecast Demonstration Project (CIFDP)

• Summary
Summary

• Storm surges sometimes lead to severe disasters
• Inundation incidents, accompanied by storm surges, are very dangerous.
• Disasters do not occur so frequently, people tend to ignore / forget the risks

• Storm surge information is important
 – Recent information by storm surge model is satisfactory
• For further improvement, integrated information will be effective
 – (surge, tide, wave, river flow, rain, etc...) : CIFDP

• What is necessary for effective Disaster Risk Reduction?
 □ reliable and easily understandable predictions
 □ adequate and timely countermeasures
 □ well understanding on phenomena
 □ proactive action (early evacuation and so on)

Provider
Met/Hydro Services, Governmental staff

User
citizen
Thank you!