Advanced Dvorak Technique: An Automated Approach

Derek Wroe
Hurricane Specialist
Central Pacific Hurricane Center

Acknowledgements:
Tim Olander, Cooperative Institute for Meteorological Satellite Studies
Chris Velden, Cooperative Institute for Meteorological Satellite Studies
Advanced Dvorak Technique

• ADT is a computer based algorithm that objectively determines TC intensity using geostationary IR imagery
• ADT is patterned after the traditional Dvorak technique
 – Output is CI and T number
 – Utilizes same scene types
• Primary motivation:
 – Remove subjectivity
 – Promote uniformity
• Subjectivity most prominent in cloud type patterning
Advanced Dvorak Technique

History

• **Objective Dvorak Technique (ODT), 1995**
 – Analyst subjectivity could be introduced by selecting cloud pattern type and applying rules
 – Only worked on strong tropical storm or hurricane

• **Automated Objective Dvorak Technique (AODT), 2001**
 – Completed automated…no human interaction
 – Worked on any tropical cyclone (tropical depression and higher)
 – Added new scene types and constraints

• **Advanced Dvorak Technique, 2004**
 – Automated center determination
 – Inclusion of microwave data
Advanced Dvorak Technique

- ADT differs from traditional Dvorak technique
 - Performed hourly
 - Uses time averaging of T no
 - Includes some microwave adjustments
- Employs automated center finding in stronger systems
- Relies on some inputs from NHC, JTWC, or CPHC
 - Uses center position in weaker systems and as first guess in stronger systems
 - For C/K/Z MSLP estimate: needs radius of 34 kt winds, outermost closed isobar, and radius of outermost closed isobar
CIMSS ADT OUTPUT

- Current Intensity #
- Final T #
- Scene Classification
- Adjustments from microwave
- Corresponding MSLP & max winds
- Similar to Data T #
- Dvorak constraints
ADT Increased Precision

• ADT produces CI in increments of 0.1, yielding more precise MSW

• ADT using Courtney / Knaff / Zehr approach to determine MSLP
 – Considers TC latitude, size, and environmental pressure

<table>
<thead>
<tr>
<th>CI</th>
<th>MSW</th>
<th>MSLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>30</td>
<td>1000</td>
</tr>
<tr>
<td>2.5</td>
<td>35</td>
<td>997</td>
</tr>
<tr>
<td>3.0</td>
<td>45</td>
<td>991</td>
</tr>
<tr>
<td>3.5</td>
<td>55</td>
<td>984</td>
</tr>
<tr>
<td>4.0</td>
<td>65</td>
<td>976</td>
</tr>
<tr>
<td>4.5</td>
<td>77</td>
<td>966</td>
</tr>
<tr>
<td>5.0</td>
<td>90</td>
<td>954</td>
</tr>
<tr>
<td>5.5</td>
<td>102</td>
<td>941</td>
</tr>
<tr>
<td>6.0</td>
<td>115</td>
<td>927</td>
</tr>
<tr>
<td>6.5</td>
<td>127</td>
<td>914</td>
</tr>
<tr>
<td>7.0</td>
<td>140</td>
<td>898</td>
</tr>
<tr>
<td>7.5</td>
<td>155</td>
<td>879</td>
</tr>
<tr>
<td>8.0</td>
<td>170</td>
<td>858</td>
</tr>
</tbody>
</table>
ADT Performance: MSW (kt) (1999 - 2010)

- Nearing skill of subjective Dvorak
- Still struggles with weak systems

<table>
<thead>
<tr>
<th>N = 289</th>
<th>CIMSS ADT</th>
<th>Dvorak</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS</td>
<td>- 2.5</td>
<td>- 1.9</td>
</tr>
<tr>
<td>AVG ERROR</td>
<td>10.9</td>
<td>7.7</td>
</tr>
<tr>
<td>RMSE</td>
<td>14.3</td>
<td>9.9</td>
</tr>
</tbody>
</table>

Validation from recon-aided Best Track
Advanced Dvorak Technique
Passive Microwave Data

- Only used in developing systems
- Microwave imagery used to search for developing eye structure under dense overcast
- If thresholds are met, the Final T in the ADT history file is overridden with a 4.3 or 5.0
- All subsequent T numbers and MET in history file are altered
Advanced Dvorak Technique

- CIMSS website: http://tropic.ssec.wisc.edu/
Questions?

Derek Wroe
derek.wroe@noaa.gov